42.8 Gbit/s DPSK 信号的波分复用传输实验*

吴琳,刘亮,张帆,陈章渊,徐安士

(北京大学 电子系 区域光纤通信网与新型光通信系统国家重点实验室,北京 100871)

摘 要:实现了 42.8 Gbit/s 差分相移键控调制信号的三信道波分复用传输实验.传输链路为 410 km的标准单模光纤,分为四个放大段,采用色散补偿光纤进行色散补偿和掺铒光纤放大器/分 布式喇曼放大器混合放大方式.给出了差分相移键控信号及其解调后的信号在背对背和传输后的 光谱和眼图(中路波长信号).在接收端使用单端检测,给出中路波长的差分相移键控信号背对背情 况和传输后的误码率曲线,并与单信道传输时进行比较.经过传输后的中路信号的误码率可维持在 1.0E-3 左右.

关键词:光通信;波分复用;差分相移键控;标准单模光纤;混合放大

中图分类号:TN929.11 文献标识码:A

文章编号:1004-4213(2009)12-3180-5

0 引言

在波分复用(Wavelength Division Multiplexing, WDM)系统中,每信道 40 Gbit/s 的传输速率能够减 少终端数量和提高频谱效率,从而降低商用成本,因 此吸引各大通信设备厂商和研究机构对 40G 相关技 术进行了研究.根据已知的发表文献,最早的 40G WDM 传输实验研究报道于 1996 年^[1].之后突破性的 进展不断被报道^[2-3].国内的研究机构也于 2006 年首 次实现 40G WDM 长距离环路传输系统^[4].

在 40G 传输技术的发展过程中,相位调制信号 由于其在光信噪比(Optical Signal-to-Noise Ratio, OSNR)、非线性容忍度等方面具有优越性^[5-7];在近 几年的 WDM 传输实验中,越来越多地采用差分二 进制相移键控(以下简称差分相移键控)调制信 号^[8-11].

由于 40G 系统要求更高的 OSNR,因而需提高 入纤功率,但这样又会带来较大的非线性损伤.因此 在 40G 系统中,掺铒光纤放大器(Erbium-Doped Fiber Amplifier,EDFA)放大方式受到一些局限.近 年来的研究表明,通过合理的设计,EDFA/分布式 喇曼放大器(Distributed Raman Amplifier,DRA) 混合放大方式能够获得平坦的增益谱,同时可以减 小抽运数目,满足高速率光通信传输的需要^[12].

根据已知的发表文献,本文采用 EDFA/DRA 混合放大方式,在国内首次实现了 42.8 Gbit/s 非

归零差分相移键控(Non-return to Zero Differential Phase-Shift Keying, NRZ-DPSK)信号的三信道 WDM 传输实验.在接收端采用单端检测,中间波长的 DPSK 信号在 410 km 传输后最低误码率(Bit Error Rate, BER)可到 4.7E-4.

1 实验装置

三信道 DPSK 信号传输系统框图如图 1.4 路 10.7 Gb/s的伪随机二进制序列(Pseudo-Random Binary Sequence, PRBS)信号脉冲由脉冲发生器生成, 经由复用器复用为 42.8 Gb/s 的单路电信号,送入 DPSK 信号光发射机(SHF5003). 冗余的 7%带宽是 为了模拟前向纠错码(Forward Error Correction, FEC)的使用. DPSK 发射机主要由铌酸锂马赫曾德调 制器(偏压设置为传输曲线的零点)构成^[5],输入的直 流光经由预编码后的电信号的调制,生成 42.8 Gb/s NRZ-DPSK 光信号. 由于铌酸锂调制器要求输入的多 路直流光偏振态一致,所以将三个激光源的输出经过 偏振耦合,再输入调制器进行调制. 直流光波长的选 择因现有的实验设备条件限制,分别为1550.10、1 550.78 和1 551.70 nm. 产生的三路 DPSK 信号输入 光纤链路中,由于信号速率高,无需另外在调制器后 加上一段光纤使不同波长的信号失步(即去相关).实 验所用链路由标准单模光纤(Standard Single-Mode Fiber, SSMF) 和 色 散 补 偿 光 纤 (Dispersion Compensation Fiber, DCF)组成, 分为四个放大段. 每 段的单模光纤长度分别为 93、106、106 和 106 km,总 长度为410 km. 单模光纤的色散以及色散斜率由色散 补偿光纤补偿,损耗由 EDFA 和喇曼放大器提供的增 益补偿. 色散补偿光纤的损耗由背向喇曼放大器 (Backward Raman Amplifier, BRA)补偿. 在接收端经

 ^{*}国家高技术研究发展计划(2006AA01Z253、2006AA01Z261)、国家自然科学基金(60877045,60736003)和国家教育部留学回国人员科研启动基金资助Tel:010-62763334 Email:fzhang@pku.edu.cn收稿日期:2009-02-02

图 1 DPSK 信号 WDM 传输实验系统

Fig. 1 The experimental setup of DPSK WDM transmission system

过 EDFA1 的放大,送进 3 dB 带宽为 0.65 nm 的 40G 波分解复用器解复用出需检测的单路信号,再进行放大和滤波(带通滤波器 3 dB 带宽为 1.5 nm),最后送进马赫-曾德延迟干涉仪(Mach-Zehnder Delay Interferometer, MZDI)进行解调. DPSK 信号经过 MZDI 延迟 1 比特周期后与原信号进行干涉,其相加性端口的输出信号格式为双二进制信号^[13].接收端采用单端检测,相加性干涉端口输出的光信号进入光接收机,进行误码检测.光谱分析仪和数字通信分析仪分别用来检测 DPSK 信号的光谱和眼图.

2 实验结果

2.1 中路信号(波长1550.78 nm)的传输结果

发射机出来的三路 DPSK 信号光谱(光谱仪分 辨率 0.1 nm)如图 2.由于现有偏振耦合器以及激光 源的条件限制,三路信号的功率不完全相同,中路信

图 2 三路信号背对背光谱图

Fig. 2 The optical power spectrum of three DPSK signals in back-to-back configuration

号的功率最高,其调制后的 OSNR 为 39.20 dB.

将光纤链路去掉,在背对背情况进行解复用和 解调,解调后的 DPSK 信号的光谱和眼图如图 3.背 对背情况下,中路波长的信号眼图信噪比(EYE S/ N)约为 6.2.

(b)Eye diagram

图 3 背对背情况下中路 DPSK 信号(解调后) Fig. 3 The DPSK signal of center channel in back-to-back configuration (after demodulation)

经过 410 km 光纤传输后的三路信号光谱图如 图 4. 可以看到,经过传输后,中路信号的 OSNR 降 为 22.0 dB.

Fig. 4 The optical power spectrum of the three DPSK signals after 410 km transmission

中路波长解调后的 DPSK 信号的光谱和眼图 如图 5,与背对背情况相比,信号光谱并无明显变 化;但从眼图上可以观察到,噪声的累积使得信号质 量恶化,传输后的眼图信噪比约为 4.7 dB.

根据接收信号的眼图质量和误码率性能,调节 每个放大段 EDFA 的输出功率,使得信号的非线性 传输损伤和光信噪比的要求达到一个最佳平衡.优 化后的中路波长入纤功率为 0 dBm,在此输入功率 条件下测量了该信道传输后随接收机功率变化误码 率,同时还给出三信道调制背对背情况下该信道和 单信道 DPSK 信号 410 km 传输后的误码率曲线, 如图 6.

从图 6 看到,相比于单信道传输,在 WDM 情况下,DPSK 信号质量恶化更严重,在较大的功率范围(~3 dBm)内,误码率维持在 1E-3 左右,最低误码

率可到 4.7E-4.该误码率低于增强型前向纠错技术的 BER 界限 2.0E-3,这样,在使用增强型 FEC 技术,如级联 Reed-Solomon (255,239)纠错码时,可以实现无误码传输(BER<1E-13)^[14].

2.2 左路信号(波长1550.10 nm)的传输结果

由于实验所用滤波器的条件限制,无法对右路 信号进行解复用和检测. 左路信号(其波长为 1550.10 nm)解调后的 DPSK 眼图如图 7.

(b)After transmission

图 7 左路波长 DPSK 信号眼图(解调后) Fig. 7 The DPSK signal eye diagram of the left channel (after demodulation)

从图 2 得知左路波长的功率较低,测得信号 OSNR 为 33. 20 dB,说明调制后的信号质量较差. 图 7(a)进一步说明这点,数字通信分析仪已无法测 得背对背情况下的解调后 DPSK 信号的眼图信噪 比.此时测得的最低误码率可达 4. 5E-7. 410 km 传 输后的 DPSK 信号 OSNR 为 16. 5 dB,同样无法测 得眼图信噪比,测得的最低误码率可达 3. 5E-3.

由分析可知,WDM 传输误码率较高的原因为: 1)交叉相位调制(Cross-Phase Modulation,XPM) 效应的存在使得信道间串扰比较严重.实验中由于 仪器条件的限制,三路波长的最小间距为 0.68 nm, 而 40 G DPSK 信号的频谱又较宽,所以信道间的串 扰更加严重.2) 铌酸锂调制器的最佳工作状态为单 波长输入(最大输入功率为 11.7 dBm),而三波长同 时输入的总功率也不能超过 11.7 dBm,所以就每个 信道而言,其调制信号的质量不如单波长输入时好. 我们测试了单波长调制的 DPSK 信号,其背对背情 况下的 OSNR 为 47.70 dB,眼图信噪比为 7.5.所 以三波长调制时,发射机送出的信号已经较单路调 制时较差,经过 WDM 传输后进一步恶化.此外,由 于使用单端检测和链路色散未进行优化等原因, DPSK 信号的误码率也会较高.若采用双端检测,同 时在发射端和接收端进行色散预补偿和后补偿,相 信系统性能会得到改善.

3 结论

本文实现了基于标准单模光纤的 42.8 Gbit/s DPSK 信号的三信道波分复用 410 千米传输实验. 传输链路采用色散补偿光纤和 EDFA/DRA 混合放 大方式.中路波长的 DPSK 信号传输后使用单端检 测,误码率可维持在 1.0E-3 左右.

参考文献

- ISHIKAWA G,OOI H,AKIYAMA Y,et al. 80-Gb/s (2×40-Gb/s) transmission experiments over 667-km dispersion-shifted fiber using Ti: LiNbO₃ OTDM modulator and demultiplexer[C]. In Proc ECOC, 1996, Paper ThC. 3. 3.
- [2] FUKUCHI K,KASAMATSU T,MORIE M, et al. 10. 92-Tb/ s (273 × 40-Gb/s) triple-band/ultr-dense WDM opticalrepeatered transmission experiment [C]. In Proc OFC, 2001, Paper PD24.
- BIGO S, FRIGNAC Y, CHARLET G, et al. 10. 2Tbit/s
 (256x42. 7Gbit/s PDM/WDM) transmission over 100km TeraLightTM fiber with 1. 28bit/s/Hz spectral efficiency[C]. In Proc OFC, 2001, Paper PD25.
- [4] ZHANG De-chao, LI Xiao-lin, ZHANG Xiao-ru, et al. 43 Gb/s DWDM optical transmission system using NRZ format and electro-absorption modulation[C]. In Proc. First International Conference on Communications and Networking in China, 2006:344765.

- [5] WINZER P J, ESSIAMBRE R -J. Advanced optical modulation formats[C]. *Proceeding of the IEEE*, 2006, 94(5): 952-985.
- [6] WANG Cheng-wei, WEN Ai-jun, WU Jian-hong, et al. Differential precoder for high-speed optical DQPSK transmission[J]. Acta Photonica Sinica, 2007, 36(S1): 42-45 王成巍,文爱军,吴建红,等. 高速光 DQPSK 调制中预编码器 的实现[J]. 光子学报,2007,36(S1): 42-45.
- [7] XU Ming, JI Jian-hua, MA Jun-xian. The Simplifying of system transmission in DPSK dispersion managed linear and soliton-like systems [J]. Acta Photonica Sinica, 2007, 36 (9): 1636-1640.
 (A the left the ELE ELE DEPCH of the function of the f

徐铭,吉建华,马君显. DPSK 色散管理线性和类孤子系统传输 的简约解[J]. 光子学报,2007,**36**(9): 1636-1640.

- [8] RASMUSSEN C,FJELDE T,BENNIKE J, et al. DWDM 40G transmission over transpacific distance (10,000km) using CSRZ-DPSK and enhanced FEC and all-Raman amplified 100 km UltraWave fiber spans [C]. In Proc OFC, 2001, Paper PD18.
- [9] CHARLET G, CORBEL E, LAZARO J, et al. WDM transmission at 6 Tbit/s capacity over transatlantic distance and using 42. 7Gbit/s differential phase-shift keying without pulse carver[C]. In Proc OFC, 2004, Paper PDP36.
- [10] CAI J-X, NISSOV M, ANDERSON W, et al. Long-haul 40 Gb/s RZ-DPSK transmission with long repeater spacing[C]. In Proc OFC,2006,Paper OFD3.
- [11] CAI J-X, FOURSA D G, LUCERO A J, et al. Long-haul 40 Gb/s RZ-DPSK transmission over 4, 450 km with 150-km repeater spacing using raman assisted EDFAs[C]. In Proc OFC, 2007, Paper OWM3.
- [12] CHANG Jian-hua, SUN Xiao-han, ZHANG Ming-de. Optimal design for broad-band raman/EDFA hybrid amplifier[J]. Acta Photonica Sinica, 2006, 35(4): 578-582.
 常建华,孙小菡,张明德.宽带喇曼/EDFA 混合放大器的优化 设计[J]. 光子学报, 2006, 35(4): 578-582.
- [13] PENNINCKX D, BISSESSUR H, BRINDEL P, et al. Optical differential phase shift keying (DPSK) direct detection considered as a duobinary signal [C]. In Proc ECOC, 2001, Paper We. P. 40.
- [14] VAREILLE G, SAB O A, BASSIER G, et al. 1. 5 terabit/s submarine 4000 km system validation over a deployed line with industrial margins using 25 GHz channel spacing and NRZ format over NZDSF [C]. In Proc OFC, 2002, Paper WP5.

Experimental Study of 42.8 Gbit/s Differential Phase-shift Keying Signal WDM Transmission

WU Lin, LIU Liang, ZHANG Fan, CHEN Zhang-yuan, XU An-shi

(State Key Laboratory of Advanced Optical Communication Systems & Networks, Peking University, Beijing 100871, China)

Abstract: The three-channel transmission of 42. 8 Gbit/s nonreturn-to-zero differential phase-shift keying (NRZ-DPSK) signal is demonstrated. The 410 km transmission link consists of four spans using standard single-mode fiber (SSMF). The dispersion compensation fiber (DCF) and erbium-doped fiber amplifier/ distributed raman amplifier (EDAF/DRA) hybrid amplification are used. Both optical power spectrum and eye diagrams of the DPSK signal are given in back-to-back configuration and after transmission (center channel). The curves of bit error rate (BER) of the center channel also is given, both in back-to-back configuration and after transmission, which is compared with the curve in single-channel transmission configuration. The BER of the DPSK signal of the center channel is 1.0E-3 after transmission using single-ended detection.

Key words: Optical communication; Wavelength-division multiplexing; Differential phase-shift keying; Standard single-mode fiber; Hybrid amplification

WU Lin was born in 1980. He is currently working toward the Ph. D. degree in optical communication at Peking University, and his reserach interests focus on new technology in high-speed optical transmission system, especially advanced modulation form.